Projects

Research, equipment and other related activities are funded through projects and institutional funding of science.

Projects funded by the Ministry of Education, Science and Technological Development of the Republic of Serbia

Projects funded during the period 2011-2019. (Short English/Serbian description of the project is given below).

TR-33018
Increase in energy and environmental efficiency of processes in pulverized coal-fired furnaces and optimization of utility steam boiler air preheater by using in-house developed software tools

The project included a broad range of research activities, from theoretical to applied. Mathematical models and software for simulation of complex furnace processes under variable operating conditions were developed in-house to improve the energy and environmental efficiency of the pulverized coal-fired boilers by optimization of working parameters. In order to predict processes in reactive multiphase turbulent flow, turbulence and heat transfer models were improved. A version of differential Reynolds stress turbulence model was optimized in a straight rectangular duct. For the purpose of more accurate determination of radiative flux, the zonal model of thermal radiation for the furnace with ash deposit layers on the walls was optimized, while the boiling process in the waterwall pipes was also modeled. By using developed differential model of furnace processes, with NOx formation/destruction and Ca-based sorbent particle reactions models, analyses of gaseous pollutants reduction were made over a range of conditions. The NOx emission reduction of 30% was possible by modification of processes in the case-study thermal power plant (TPP) Kostolac B 350 MWe utility boiler furnace, with flame position control. Proper distribution of finely ground sorbent particles could provide an efficient SO2 absorption by furnace sorbent injection method. Injecting 10 µm CaCO3 particles into the furnace of the TPP Kostolac B boiler unit 2, through the burner tiers, provided SO2 reduction of over 45% at the furnace exit. Injection location has an outstanding importance, affecting the particle residence time and local gas temperature surroundings. To enable efficient data input and to meet the real engineering needs, a new user-friendly software interface was developed. Effects of the emission reduction measures on the boiler operation efficiency and safety were examined by the software tool developed for thermal and hydraulic calculation of steam boiler. A software tool for calculation and geometry optimization of rotary air preheater, as the outlet heat exchange surface of the boiler, was also developed. The preheater calculations showed that the TPP Kostolac B boiler unit efficiency could be increased by 0,20 percentage points, with a decrease in the coal consumption of 5000 t per year, by increasing the heat exchanging surface and using an active leakage control in the preheater. Numerical predictions of the effects of the screen walls slagging on the heat transfer intensity, the control of steam temperatures and the boiler energy efficiency were also performed. A modified combustion system with air staging to reduce NOx in substoichiometric conditions, was analyzed by the furnace numerical predictions linked with integral calculations of other heat exchange surfaces of the boiler. With the aim to achieve an optimal combustion organization, a thermal calculation model of the furnace was improved, while the obtained results were compared with the available measurements on the TPP Kostolac B boiler unit 1. The calculations were done when changing the boiler load from 70% to 110%. Most of the test-cases meet the NOx emission limits, with higher operation efficiency and reduced fuel consumption, but also with a decrease in the boiler operation safety. For reliable prediction of direct co-combustion of pulverized fuels (coal and biomass), mathematical model and software were developed and applied to optimize the co-firing, regarding combustion efficiency and reduction of CO2, SO2 and NOx. Influence of the biomass thermal share and feeding method and the size and shape of biomass particles on the lignite/wheat straw co-firing process in the TPP Kostolac B boiler unit 2 was investigated. In-house developed models and software may contribute to efficient, environmentally friendly and cost-effective exploitation and operation life extension of domestic power plants, with software solutions corresponding to international experience, high level analysis of boilers and furnaces operation and technology transfer to end-users.

Povećanje energetske i ekološke efikasnosti procesa u ložištu za ugljeni prah i optimizacija izlazne grejne površine energetskog parnog kotla primenom sopstevnih softverskih alata

Projekat je obuhvatio širok domen istraživačkih aktivnosti, od teorijskih do primenjenih. Razvijene su varijante sopstvenih matematičkih modela i softverskih alata za simulaciju izuzetno složenih ložišnih procesa u različitim i promenljivim uslovima, sa ciljem da se optimizacijom brojnih radnih parametara doprinese povećanju energetske i ekološke efikasnosti kotlova sa sagorevanjem ugljenog praha. Primenom razvijenog diferencijalnog modela strujnotermičkih procesa u ložištu, sa modelima formiranja/destrukcije NOx i reakcija kalcinacije/sinterovanja/sulfatizacije čestica sorbenta na bazi kalcijuma radi uklanjanja SO2, izvedena je analiza mogućnosti redukcije emisije ovih polutanata u širem dijapazonu radnih uslova. Pokazano je da se modifikacijom procesa u postojećem ložištu predmetnog energetskog kotla bloka snage 350 MWe TE Kostolac B može postići redukcija emisije NOx od 30%, uz istovremenu kontrolu položaja plamena. Pogodnom distribucijom sitnijih frakcija čestica sorbenta postiže se efikasna apsorpcija SO2 metodom direktnog unošenja sorbenta u ložište. Dodavanjem čestica CaCO3 veličine 10 µm u ložište kotla bloka 2 TE Kostolac B kroz etaže gorionika dobijena je redukcija SO2 preko 45% i to na izlazu iz ložišta. Mesto unošenja sorbenta ima izuzetan značaj, jer utiče na temperature kojima je čestica izložena i vreme boravka u ložištu. U cilju efikasnog unosa podataka i prilagođavanja potrebama pogonskih inženjera, razvijen je novi korisnički interfejs softvera za simulaciju opisanih procesa. Softverskim alatom razvijenim za termički i hidraulički proračun parnog kotla ispitan je uticaj ovih mera redukcije emisije na efikasnost i sigurnost rada kotla. Izvedena je i analiza rada kotla sa modifikovanim sistemom sagorevanja uz višestepeno dovođenje vazduha radi redukcije NOx u podstehiometrijskim uslovima, uz povezivanje numeričkih simulacija ložišta i integralnih proračuna ostalih grejnih površina. Usavršen je model za jednodimenzijski termički proračun ložišta, a rezultati upoređeni sa merenjima na bloku 1 TE Kostolac B. Proračuni su izvedeni pri promeni opterećenja od 70% do 110%. Većina test slučajeva zadovoljava norme o emisiji NOx, uz efikasniji rad i smanjenu potrošnju goriva, ali i pad sigurnosti rada kotla. U cilju postizanja optimalne organizacije sagorevanja izvedena je analiza kvaliteta rada kotla sa modifikovanim i konvencionalnim sistemima sagorevanja (blok 1 i 2) TE Kostolac B. Razvijen je i softverski alat za proračun i optimizaciju geometrije rotacionog zagrejača vazduha kao izlazne grejne površine energetskog kotla. Proračuni zagrejača pokazali su da se povećanjem grejne površine ispune i uvođenjem aktivnog zaptivanja rotora zagrejača može povećati stepen korisnosti kotla bloka TE Kostolac B za 0,20 procentnih poena i tako smanjiti potrošnju uglja za 5000 tona godišnje. Radi pouzdanijeg predviđanja reaktivnog višefaznog turbulentnog toka unapređeni su modeli turbulencije i razmene toplote. Optimizovana je varijanta diferencijalnog naponskog modela turbulencije u pravom pravougaonom kanalu. U cilju tačnijeg određivanja radijacionog fluksa optimizovan je zonalni model toplotnog zračenja i proračun radijacionih svojstava gas-čestice medijuma, razvijen je efikasniji proračunski algoritam primene zonalnog modela zračenja, ispitan je uticaj zaprljanja isparivačkih površina na efikasnost razmene toplote u ložištu i modeliran proces ključanja u cevima isparivača. U cilju predviđanja sagorevanja opsega sprašenih goriva (uglja i biomase) razvijen je matematički model i primenjen je za optimizaciju postupka direktnog kosagorevanja lignita i pšenične slame u ložištu kotla TE Kostolac B-2, sa aspekta efikasnijeg sagorevanja i redukcije CO2, SO2 i NOx, uz ispitivanje uticaja termalnog udela biomase, veličine i oblika čestica biomase i načina unošenja u ložište. Sopstveni modeli i softveri mogu doprineti efikasnoj, ekološkoj, fleksibilnoj i ekonomičnoj eksploataciji i produženju radnog veka domaćih termoenergetskih postrojenja, a razvijena tehnologija bi se mogla plasirati u okruženje. Ovakav pristup omogućava kontinuirano usklađivanje sopstvenih znanja i softverskih rešenja sa svetskim, uz visok nivo analize rada ložišta i kotlova.